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The paper develops proposals for a model of turbulence in which the Reynolds 
stresses are determined from the solution of transport equations for these vari- 
ables and for the turbulence energy dissipation rate E .  Particular attention is 
given to the approximation of the pressure-strain correlations; the forms adopted 
appear to give reasonably satisfactory partitioning of the stresses both near walls 
and in free shear flows. 

Numerical solutions of the model equations are presented for a selection of 
strained homogeneous shear flows and for two-dimensional inhomogeneous shear 
flows including the jet, the wake, the mixing layer and plane channel flow. In  
addition, it is shown that the closure does predict a very strong influence of 
secondary strain terms for flow over curved surfaces. 

1. Introduction 
Recently a number of efficient numerical procedures have been published for 

solving the equations governing three-dimensional fluid flow (e.g. Patankar & 
Spalding 1972). This development emphasizes the need for models of turbulence 
more generally applicable than those based on the notion of effective turbulent 
transport coefficients. For, while 'effective viscosity ' models have led to satis- 
factory predictions of many two-dimensional thin shear flows, their use in three- 
dimensional flows and other flows with more than a single significant component 
of mean velocity gradient has achieved, a t  best, only moderate success. One may 
cite turbulence-driven secondary flows in non-circular ducts or the influence of 
swirl on jet spreading rates as examples of phenomena which cannot satis- 
factorily be predicted with models of the effective-viscosity type. 

There is a widely held view (Donaldson 1971; Hanjali6 & Launder 1972b; 
Bradshaw 1972) that the most promising class of turbulence models for making 
numerical calculations of such complex flows is that based on the solution of 
approximated equations for the Reynolds stresses -Z&. A model of this kind 
was first proposed by Rotta (1951) and a few predictions have recently been 
obtained with closures of the same type by Daly & Harlow (1970), Reynolds 
(1970), Donaldson (1971), Naot, Shavit & Wolfshtein (1972) and Lumley & 
Khajeh-Nouri (1974). 

The range of flows considered in each of these papers was clearly too narrow to 
t Present address : Sonderforschungsbereich 80, University of Karlsruhe, Germany. 
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permit conclusions to be drawn regarding the range of applicability of the models 
presented. The approximated Reynolds-stress equations attempt to provide 
simulations of the dissipative, diffusive and redistributive processes appearing 
in the exact equations for the uIui. If attention is limited to just one or two types 
of flow, one may be led to conclude that one is imitating these processes cor- 
rectly; however, a wider inquiry embracing flows where the relative magnitudes 
of the processes are very different may show large discrepancies between pre- 
dicted and measured behaviour. 

An extensive set of predictions of thin shear flows was presented by Hanjalid & 
Launder (1972b, hereafter designated HL). But, although HL developed a general 
Reynolds-stress closure, when it came to solvin,g the equations, their model was 
simplified to one where the shear stress and the sum of the normal stresses were the 
only Reynolds-stress elements found. This simplified model, though adequate for 
the flows examined by its originators, is not suitable for the more general three- 
dimensional flows mentioned above. Our purpose here, therefore, is to present 
the outcome of predicting a similar range of turbulent flows, only now employing 
a complete Reynolds-stress closure. The flows examined include a number of 
free shear flows (jet, wake and mixing layer), plane channel flow (both symmetric 
and asymmetric) and three cases of distorted homogeneous turbulence. 

Sections 2 and 3 below develop the form (or rather forms) of the stress closure 
we have examined; the applicability of the model is limited to regions of flow 
where the turbulent Reynolds number is large. Most attention has been given to 
the approximation of the correlations between pressure and strain fluctuations, 
which play such a dominant role in the evolution of the flow. Although HL made 
proposals for approximating these terms, the extra constraints imposed by the 
need (in the present work) to account not just for the shear stress but for the three 
normal stresses too have forced a reappraisal; this appears as $2. Closure is 
completed in 6 3, where we adopt previously proposed approximations for the 
remaining unknown quantities in the u- and E equations. 

Section 4 compares the calculated and measured behaviour of the test cases, 
beginning with three homogeneous flows and proceeding to the two-dimensional 
shear flows. Finally § 5 discusses what seem to be the best routes for improving 
the model in its present form. 

- 

2. Approximation of the pressure-strain correlations 
2.1. Turbulence remote from walls 

The set of differential equations governing the transport of the (kinematic) 
Reynolds stresses - Uiuj may be written in the form 

generation Cissipation pressure 
strain 

diffusion 
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where upper and lower case u's  denote mean and fluctuating components of 
velocity, p is the fluctuation of static pressure about its mean value and x's denote 
Cartesian space co-ordinates. 

To convert (l), the mean-motion equations and the continuity equation into 
a closed set of equations for mean velocities and Reynolds stresses, the t.urbulence 
quantities on the right-hand side of (1) must be represented as empirical functions 
of the mean velocities and Reynolds stresses and their derivatives. In  this section 
we consider the approximation of the pressure-strain correlation, the third group 
of terms on the right side of (1). Following Chou (1945), the explicit appearance 
of the pressure in the correlation is eliminated by taking the divergence of the 
equation for the fluctuating velocity ui, thus obtaining a Poisson equation for p .  
The pressure-strain correlation may then be re-expressed in the following form 
for a position x in the flow: 

h5.1 i i j ,  a 

where terms with and without a prime relate to values at y and x respectively (the 
integration being carried out over y space), and Xij is a surface integral which will 
be negligible away from the vicinity of a solid boundary. Equation (2) suggests 
that there are two distinct kinds of interaction giving rise to the correlation 
p 3ui/axj; one involving just fluctuating quantities (&, 1) and another arising 
from the presence of the mean rate of strain ($ i j ,  2). 

Nearly every worker who has made closure approximations for ( 1 )  has adopted 
Rotta's (1951) proposal for q5ij, 1, which may be written as 

where c1 is supposed to be a constant (at any rate, at high Reynolds numbers) and 
k and e are the time-averaged turbulence kinetic energy and energy dissipation 
rate respectively: the quotient kfe thus represents a characteristic decay time of 
the turbulence. According to (3), the sign of $ij,l is always such as to promote 
a change towards isotropy, its magnitude being proportional to the local level of 
anisotropy. Rotta (1951) originally proposed that c1 should be about 1.4, though 
later (Rotta 1962) he showed that a value about twice as large provided a better 
fit to Uberoi's (1957) data on the decay of highly anisotropic turbulence. We do 
not, however, regard the data as entirely conclusive. For these and the later 
measurements of Tucker & Reynolds (1 968) the turbulence Reynolds number is 
rather low. It is probable therefore that in both experiments the dissipative 
motions were not isotropic, thus indicating a spuriously high value of cl. In  the 
present work we have explored the proposition that the apparent variation of c1 
from one flow to another could be correlated in terms of the local degree of 
anisotropy of the turbulence. Eventually it was concluded, however, that there 
was no overall advantage to be gained in this way. For the solutions presented in 
§ 4, therefore, c1 takes a constant value. 

Some of the proposals for closing the Reynolds-stress equation have assumed 
that c$ij, is the only significant contributor to p auifaxj (Donaldson 1968, 1971; 

t Hereafter, for brevity, q5u,1+q5ji,1 is denoted by 
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Lumley 1972; Daly & Harlow 1970).t This conclusion appears supportable pro- 
vided that one makes predictions over only a narrow range of turbulent shear 
flows; for then the effects of omitting & . 2  can be absorbed either through the 
value ascribed to c1 or through the way the decay terms in ( 1 )  are simulated. 
Reynolds (1970) has shown, however, that prediction of a range of even homo- 
geneous free turbulent flows demands the inclusion of mean strain rates in the 
pressure-strain terms. Moreover, both Crow (1968) and Townsend (1954) have 
shown that under conditions of rapid distortion the effect of &, far outweighs 
that of #i j ,  1. 

Our practice in simulating q5ii,2 also takes its direction from Rotta’s (1951) 
paper. We assume that this correlation may be approximated in the form 

$ij, 2 = ( a q / a x m )  a?, (4) 

where 

and the t ’ s  are the Cartesian components of the position vector x - y. Equation 
(4) is a rigorous consequence of (2) when all second derivatives of the mean 
velocity are negligible and the turbulence field may be taken as homogeneous; it 
is of course only approximately true in more general flows. R,otta (1951) has com- 
mented that the fourth-order tensor { a r }  should satisfy the following kinematic 
constraints: 

(5) a r  = aam 1; = air, 
. -  

aEi = 0, a? = 3umui. (6), (7) 

The form of (7) suggests that a? might be satisfactorily approximated by a linear 
combination of Reynolds stresses. The most general such tensor satisfying the 
symmetry constraints implied by ( 5 )  may be written as 

av = aslj- +/3(8mlw + & , i ~  + &U,u.3 + &U,u.I) 

+ c2 &mi- + [ T s m i  4j + ~(8wzlJij + amj si1)l k, (8) 

where a, /3, c2, 7 and v are constants. The application of (6) and (7) enables four 
of these constants to be expressed in terms of the fifth: in terms of cq 

Equations (8) and (9) were in fact developed during the HL work but eventually 
were not adopted there because with c1 assigned a value of about 2.8 (i.e. the 
value that Uberoi’s (1957) data seemed to imply) they led to  much too small 
differences between the normal stresses in the nearly homogeneous shear flow of 
Champagne, Harris & Corrsin (1970). As remarked above, however, we now feel 
less certain about the best value for cl. On balance, it seemed preferable to adopt 
the form of q5ij,2 expressed by (4), (8) and (9) and to let c1 take on a suitably 

-f In  the Daly-Harlow work the influence of mean strain rates does enter indirectly, 
however, because the magnitude of c1 depends on the ratio of the generation to tJhe 
dissipation rates of turbulence energy. 
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smaller value, rather than to retain the published HL form, which failed to 
satisfy (7) in all respects and which was therefore expected to give specious effects 
in complex strain fields. 

On combining (a), (8) and (9) the complete influence of the mean strain on the 
pressure-strain correlation may be expressed in the following compact form: 

and P denotes the rate of production of turbulence energy. 
Perhaps the first point to note is that (10) is equivalent to a recent proposal of 

Naot, Shavit & Wolfshtein (1973).? These authors pursued a considerably more 
elaborate analysis than the present one in which a shape was assumed for the 
two-point correlation function uiu;, thus enabling the integrand in (4) to be 
evaluated. The fact that (10) has been reached merely from kinematic arguments 
indicates that some of the postulates in Naot’s work were redundant. It is 
interesting to note also that for the case of isotropic turbulence subjected to 
sudden distortion, irrespective of the value of cz,  equation (10) reduces to 

- 

(#ii + +ji)z = o.4k(aq/axj + aq/axi) ,  (11) 

which is the exact result derived by Crow (1968)’ again by way of a more elaborate 
analysis. 

We have also tried a degenerate form of (10). Since each of the three groups of 
terms on the right side of (11) vanishes under contraction of indices, one may 
discard either one or two of the groups without removing the essential property 
that the term as a whole should be redistributive in character.$ The first group on 
the right side of (10) turns out to  be the dominant one and, because of its clear 
physical significance, it is interesting to discover to what extent this term alone 
can account for the mean-strain effects in the pressure-strain correlation, i.e. 

It is to be expected that the constant y will differ somewhat in magnitude from 
the coefficient of the first term in (10) to compensate in part for the neglected 
terms. Note that for isotropic turbulence (1 1) is satisfied if y takes the value 0-6; 
so if (12) is to be a useful approximation in more general flows the ‘best’ value 
of y should be near this value. Equation (12) is the counterpart of Rotta’s 
proposal for as Rotta’s term acts to diminish the anisotropy of the stress 
field so, according to  (12)) (& + $ j i ) z  tends to isotropize the turbulence produc- 
tion tensor. Equation (12) has already been proposed by Naot, Shavit & 

t The appearance of Naot’s proposal is a. little different from (10) owing to the different 

$ Equation ( 5 )  however is not satisfied. 
analytical paths followed. 
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Wolfshtein (1  970) as a replacement for q5ij, 1. In  our work we have used it in addition 
to Rotta’s tendency-to-isotropy term. 

An empirical constant appears in both the ‘complete’ and the simplified 
approximations to the second part of the pressure-strain term. The most direct 
information about these constants is given by the nearly homogeneous shear flow 
of Champagne et al. (1 970), where Ul varies linearly with x2. In  this flow diffusive 
stress transport is insignificant throughout and convective influences are small at 
the downstream end of the test section. Thus, if w0 neglect the transport terms 
from (1 ), incorporate the pressure-strain approximations discussed above and 
(as proposed in 9 3) assume the dissipative motions to be isotropic, (1)  reduces to 
a set of algebraic formulae for the normal stresses. For the more elaborate 
pressurestrain model there results 

- 

(13) I (u; - 8k) /k  = (8 + 12C2)/33C1 

(2- $k) /k  = (2 - 3Oc2)/33c1 

(u: - $k) /k  = ( -  10+ 18~2)/33~1 

( N 0*3), 
(2i - 0*18), 

( N - 0.12). 
- 

The experimental values given in parentheses are well represented by the model 
formulae with c2 approximat,ely 0.4, provided that c1 takes a value of about 1.5; 
the value of about 2.5 used by HL and others makes the normal stresses too nearly 
equal. The corresponding formulae for the simplified model [equation (12)] are 

(2 - $k) /k  = 4( 1 - y)/3c1, 
- 
(u; - $k) /k  = - 2( 1 - y)/3c1, 

(u; - +k) /k  = - 2( 1 - y)/3c1. 
- 

Because there is no direct production of z o r  uTthese normal stresses are equal 
in magnitude when the simpler pressure-strain hypothesis is used; thus it cannot 
match the experimental result that the lateral stress component is somewhat 
larger than the transverse one. However, these differences are not so large as to  
disqualify (12) from further consideration.? With y set to equal 0.6 to satisfy (1 l),  
the experimental values are again tolerably well matched with c1 about 1.5. 

2.2. Near-wall turbulence 

Let us compare the relative stress levels in near-wall turbulence with those in the 
homogeneous shear layer mentioned above. Both are flows where convection and 
diffusion of the Reynolds stresses are small and where, in consequence, turbu- 
lence energy generation and dissipation rates are very nearly in balance. The 
approximations made so far for the pressure-strain correlation imply that the 
relative magnitudes of the Reynolds stresses will be the same in each of these 
flows. Table 1, which summarizes experimental data, shows, however, that near 
a wall the streamwise stress component is appreciably larger and the transverse 
component much smaller than in the homogeneous free shear layer. The level of 
w / k  is also appreciably smaller in the near-wall flow. 

t The larger differences between 2 and 2 found in near-wall turbulence are due to the 
wall proximity, as discussed in § 2.2. 
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- - - 
U y k - 8  u; /k -#  u;/k-3 - u , / k  

Plane homogeneous shear layer (Champagne 0.30 - 0.18 - 0.12 0.33 

Near-wall turbulence (a consensus of near-wall 0-51 - 0.42 - 0.09 0.24 

et al. 1970) 

turbulence data) 

TABLE 1. Reynolds stresses in equilibrium shear flows 

These results suggested that (4) did not adequately approximate the influences 
of mean strain on the pressure-strain term when the mean velocity gradient 
varied rapidly in space. Accordingly, following Rotta (1951) we generalized (4) to 

where 

This form has been extensively tested, the quantity n%cp being approximated 
by methods parallel to those adopted for choosing a?. Nevertheless, entirely 
satisfactory behaviour could not be achieved, especially in the asymmetric 
channel flow of Hanjalid & Launder (1972a). As figure 1 shows, the measured 
normal stresses in this flow are by no means equal even in the neighbourhood of 
the velocity maximum. The behaviour seemed almost certainly due to a ‘wall 
proximity’ effect in the pressure-strain term; and yet a3U,/axi was entirely 
negligible in the vicinity of the maximum velocity. It was concluded, therefore, 

2.0 
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FIGURE 1.  Turbulence intensity profiles in asymmetric channel flow, 
Hanjali6 & Launder (1972a). 
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that the near-wall influence could not be attributed simply to the more rapid 
variabion of a&/axrn provoked by the wall. 

In fact, the conclusion reached above was hastened by Bradshaw's (1973b) 
demonstration that the surface integral S,j in ( 2 )  would make a significant contri- 
bution to the pressure-strain correlation as long as the typical size of the energy- 
containing motions was of the same order as the distance from the wall. As he 
remarked, this condition is always satisfied in boundary layers developing on 
walls. In this connexion, we are grateful to Dr H. P. A. Irwin for pointing out, 
that for a plane wall (with x2 normal to the surface) ( 2 )  may be recast to advantage 
in the following form, from which the surface integral is eliminated: 

(17 )  

where y* is the image of the point y (i.e. its components are yl, - yz and y3) and 
the volume of integration is the region x2 > 0. This form immediately suggested 
that there should be two contributions t o  the near-wall effect, corresponding to 
the reflected-wall influence of &, and #ij, 2. Once this inference has been drawn 
it is easy to find support from experiments. As table 1 has shown, the wall effect 
increases the anisotropy of the normal stresses but tends to diminish the shear 
stress. Additionally, figure 1 suggests that the wall influence is felt in regions 
where mean strain rates are negligible. Now, a term similar to q5ij, , is required 
to give the first of these effects while one needs an approximation like dij, (which 
is finite even when the mean strain rates are zero) to bring about the latter. 
Accordingly the general form of the wall-proximity effect on the pressure-strain 
term is taken as 

where 1 denotes the length scale of the energy-containing eddies; like {ae>, the 
quantity {b?) is a symmetric tensor composed of linear combinations of the 
Reynolds stresses: 

- 
b? = a'61ju,,ui+P'(6,lu,"j+6,jUri+Gii~,~j+6iiiU,UI) 

The coefficients of b? must satisfy b$ = 0 in order that $ij, be redistributive. 
Application of this constraint leads to 

d + 5 p ' + C ;  = 0, 2 p ' + 4 u ' + ~ '  = 0. (20) 

Observing from table 1 that the value of 2 is, within experimental uncertainty, 
unaffected by the presence of a wall, we set the corresponding term b,2; equal to 
zero.? Hence p' = 0 and, from (20), a' = - c;. The mean-strain part of the near- 
wall effect may thus be written as 

t The contribution of .;(elk) ( z - + k )  is barely significant because 2 is close to +k. 
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where 5‘ = u’ + 7’. The function f (1/x2) must of course vanish as l /x2 approaches 
zero. Indeed in the present work it is assumed thatfis directly proportional to l / x 2 .  
It is convenient to choose the constant of proportionality such that the function 
takes the value unity in near-wall turbulence. With 1 interpreted as the dissipa- 
tion length k2/e, the coefficient of l /x2  is easily shown to be ic/ap, where K is the 
von K6rmbn constant and a = - w 2 / k .  

We now proceed to choose c;, ch and <’ from the near-wall counterpart of (13). 
With transport terms neglected from (i), the following algebraic equations are 
obtained (to keep the appearance simple the numerical value of c2, given in 
table 2 below, has been inserted) : 

( 2 2 )  1 
(q- #k)/k = (0.39 + ~ c ; ) / ( c ,  - c;),  (z- #k) /k  = - (0.30 + 2Ch)/(cl -I$, 
(u: - #k) /k  = - O.O9/(c1 - c;). 
- 

It may be verified that with ci = 0.5 and c; = 0.06 the stress levels given by ( 2 2 )  
correspond exactly to those given in table 1. Moreover if c, which appears only 
in the shear-stress equation, is set to zero the following formula is obtained for 
u, u, : 
- 

Using ( 2 2 )  to eliminate the normal stresses and with the above values for ci and c;, 
- Z&/k equals 0.24, again in agreement with table 1. 

The form of the near-wall correction to the pressure-strain correlation finally 
adopted (with the numerical value 4.0 inserted for ./a#) is thus 

When, as in a plane channel, two parallel walls affect the flow, it is assumed that 
their influence is simply additive. Thus, with obvious notation, the coefficient 
multiplying the contents of the curly brackets in (24) is replaced by 

3. The remaining closure approximations 
The remaining unknown correlations in (1) are approximated in the same way 

as in HL; therefore only brief remarks are made in support of the approximated 
forms. There are three contributions in (1) to the diffusive transport of Reynolds 

t The same principle applied to ducts with curved or irregular boundaries suggests that 
in general the coefficient might be written as 

11 k%d$ 
G J k T  

where dy5 is the elemental solid angle subtended by a small patch on the surface a distance S 
from the point in question. The present work however offers no evidence to support or 
refute this generalization. 

35 F L M  68 



546 B. E. Launder, G .  J .  Reece and W .  Rodi 

stress. Of these, only diffusion by turbulent velocity fluctuations is retained in 
the modelled sett and this is approximated as follows: 

This form was obtained by severe simplification of' the exact transport equation 
for "iUi.uk. In  a thin shear flow (where U, S U.) the expressions for diffusive 
transport of u2 and u3 reduce to 

The approximation thus implies a gradient-driven stress diffusion but one where 
the effective diffusion coefficient is three times as large for as for 2. For com- 
parison, some predictions have also been made employing the simple gradient- 
diffusion hypothesis, proposed by Daly & Harlow (1 970) : 

For the two-dimensional thin shear flows considered in this work (26) implies an 
isotropic effective diffusion coefficient. One obvious defect of the equation is that, 
unlike the left side, the right side of (26) alters under permutation of the indices 
i, j and k.  The constants cs and c; are assigned the values 0.11 and 0.25 respec- 
tively on the basis of computer optimization. 

The decay-rate terms in (1)  are modelled by assuming the dissipative motions 
to be isotropic: 

Several experimental studies have shown that turbulence does not remain locally 
isotropic in the presence of strong strain fields (e.g. Townsend 1954; Uberoi 1957). 
Nevertheless (27) seemed to be the best of the simple hypotheses. 

The final approximated form of the Reynolds-stress equation may thus be 
written as 

where (q5ij + $ j i )2  is given by (10) [or (12)] and (4gj + g5ji)w is the near-walI effect, 
given by (24). 

t Neglect of transport by molecular interactions is permissible since, for the flows con- 
sidered, the Reynolds number of the energy-containing motions is large. Neglect of 
pressure-induced diffusion follows the practice of most other workers though there seem 
no direct evidence to sustain or demolish the assumption. 



Development of a Reynolds-stress turbulence closure 547 

The turbulence energy dissipation rate remains as an unknown in (28) and its 
value too is found by means of an approximate transport equation for that 
variable. Tennekes & Lumley (1972, p. 80) have shown that in flows at  high 
turbulence Reynolds number the exact transport equation for e (i.e. for the 
correlation v(aut/ax,)2) takes the form 

The three terms on the right side of (29) introduce further unknowns into the 
equation set describing the Reynolds stresses. The terms are not directly acces- 
sible to measurement and therefore their approximation can be verified only 
indirectly by determining whether the predicted level of c is consistent with, say, 
the measured variation of the turbulence energy through a particular shear flow. 
In  the present work we adopt the following analogue form of (29) developed and 
used in HL: 

The first term on the right side of (30) approximates the corresponding term 
in (39) responsible for the diffusive transport of E .  The second and third terms on 
the right side of (30) collectively represent the net effect of the generation of E due 
to vortex stretching of turbulent filaments and its destruction by viscous action.? 

There have been some minor changes in the values given to the coefficients in 
(30) from those originally proposed. HL had taken cE2 equal to 2-0 to cause the 
energy level of grid-generated turbulence to vary inversely with distance from its 
origin as indicated by Batchelor & Townsend's (1948) experiments. A more 
extensive scrutiny of the many investigations of grid turbulence has shown, how- 
ever, that most data suggest that the exponent in the decay law should be at  
least - 1-1. We have accordingly adjusted cE2 to 1-90 to cause this slightly faster 
rate of decay. 

The value for cE1 adopted by HL is retained here while c, is fixed by reference 
to the limiting form of (30) for near-wall turbulence, where convective transport 
of E is negligible. By setting the energy dissipation rate equal to the generation 
rate, by putting the turbulent shear stress equal to the wall value and by replacing 
aL\/ax2 by U,/Kx2, (30) may be reduced to 

where U, denotes the friction velocity. On inserting the values of the stress ratios 
implied by table I the value of c, emerges as 0.15, compared with the originally 
proposed value of 0.13. 

Equations (28) and (30), together with the mean momentum equation, com- 
prise the set of equations we have employed for computing the turbulent flows 
reported below. In  the most general circumstances the model contains 8 constants 

t Rotta (1972, private communication) and Lumley & Khajeh-Nouri (1974) have pointed 
out that HL's argument for including the mean-strain term in (30) was faulty. However, 
the latter acknowledge that the form adopted appears suitable. 

35-2 
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Equation 
of first 

Symbol appearance Value Basis for determination 

(3) 1.51 Normal-stress levels in the 
(8) 0-4 nearly homogeneous shear 

Model 1 

{; Model 2 (3) 1.5) flow 
(12) 0.6 Distortion of isotropic . .  

turbulence [equation (1 i)] 

:&} Near-wall normal-stress levels 

::::} Computer optimization 

C € l  (30) 1-44 Computer optimization 
ce2 (30) 1.90 Decay of grid turbulence 
C€ (30) 0.15 Consistency with a value of K 

of about 0.41 

TABLE 2. Values of the coefficients and basis for their choice 

to be selected by reference to experiment. The values assigned to most of them 
have been mentioned above but for completeness they are all set out in table 2. 

During the present study several hundred sets of predictions have been made 
of the test flows in which a range of different values for the coefficients have been 
explored and successively refined. In  most cases the values given to the constants 
were chosen having especial regard for some feature of a particular turbulent flow 
with which the model should comply; the features in question are listed in the 
right-hand column of table 2. For two of the const,ants, however, we had no such 
predetermined target so we tried a wider range of values than for the other 
coefficients; in table 2 these are denoted as being chosen by ‘ computer optimiza- 
tion’. ‘Model I ’ refers to the full pressure-strain approximation (10); ‘Model 2’ 
denotes the simplified version (12). Numerical solutions for both models are 
presented for all the test cases. 

4. Comparison of predictions with experiment 
Comparison is made first with three homogeneous flows subjected to mean- 

strain distortion. For these flows, turbulence properties are uniform at any 
station in the flow, and (28) and (30) reduce to a system of first-order ordinary 
differential equations, which have been solved by Runge-Kutta integration 
using experimental initial values for u i i  and E and the distribution of mean 
velocity along the test section. In  fact the initial value of the dissipation rate was 
deduced as the closing term in a turbulence energy balance. Figure 2 shows pre- 
dictions for the nearly homogeneous shear layer; the asymptotic values of the 
relative stress levels have been discussed earlier in tj 2. Both models 1 and 2 under- 
predict the level of turbulence energy by about 6 yo by the downstream end of 
the test section, mainly through discrepancies in predicting 2. Model 1 predicts 
the levels of 2 and 3 very closely throughout; only slight credit may be claimed 
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a 

6 8 10 12 

Channel widths 

FIGURE 2. Variation of kinetic energy and Reynolds stress under nearly homogeneous shear. 
0, 0 ,  experimental data of  Champagne et al. (1970); -, model 1; ---- , model 2. 

however since as noted in table 2 this flow was particularly influential in choosing 
c1 and c2. Model 2, which muses a symmetric stress redistribution, gives precisely 
the same level for u", and 2. Both versions accurately predict the shear-stress 
level in the flow. 

Next we consider the plane-strain experiments of Tucker & Reynolds (1968) 
(see also Tucker 1970), where grid-generated turbulence passed through a rect- 
angular duct of varying cross-section. The ratio of the sides of the duct changed 
from 6 : 1 to 1 : 6 with the cross-sectional area remaining constant. This was 
followed by a section of uniform cross-section where the relaxation of the turbu- 
lence was studied. In  the computations the effects of small variations in stream- 
wise velocity have been included although these have only a small influence on 
the predicted stress levels. As figure 3 indicates, the distortion greatly slows down 
the rate of diminution of turbulence energy; indeed, for x1 3 70in., the turbu- 
lence energy level increases. In  the distorting part of the test section, figures 4 (a) 
and (b )  (which contain results for different grids) show that the stresses are made 
strongly anisotropic by the distortion, more than half the kinetic energy being 
contained in the x,-direction fluctuation. Model 1 leads to predicted variations 
very similar to those measured. Less satisfactory behaviour is obtained with the 
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FIGURE 3. Kinetic energy variation in plane-strain distortion. 0 ,  mean line through data 
of Tucker 8: Reynolds (1968), grid B ;  -, model 1 ; ---, model 2. 

simpler version, model 2, the streamwise component of energy falling substan- 
tially too fast while q / k  becomes too large by the end of the distortion. Also 
shown in figure 3 are the normal-stress levels predicted by Tucker & Reynolds 
using rapid-distortion theory (see Batchelor & Proudman 1954). These achieve 
less satisfactory agreement than either of the differential stress closures, the 2 
component becoming far too small and the corresponding streamwise component 
too large. 

It will be noticed that the experimental data for the two grids do not exhibit 
quite the same behaviour, those for grid A displaying a greater spread between 

and than those for grid C. There is even greater variation in the relaxation 
portion of the test section. With grid A, the components uT and 2 revert rather 
quickly towards isotropy when the strain is removed; with grid C there is a much 
slower rise of 2 and scarcely any variation of z/k. The pre$icted rates of return 
to isotropy lie between the extremes of the measured behaviour for the two 
different grids. Models 1 and 2 reduce to essentially the same form in this part of 
the duct because mean-strain effects are not significant; differences in the pre- 
dicted values are thus due to the differences between the stress levels at the end 
of the distorting section. 

The last homogeneous flow considered is Uberoi’s (1956) 16 : 1 axisymmetric 
contraction experiment. Figure 5 shows that the transverse stress 2 is greatly 
enlarged by the acceleration and that the streamwise stress component also rises 
over the latter part of the acceleration owing to appreciable energy transfer from 
the u2 and components. The predictions reproduce the trend of the measured 
behaviour but underpredict the magnitude of the rise in 2, especially model 2. 
The reason for the rather poor prediction of u2 seems to be that the models for 
$ij,z cause too large an energy transfer from u2 to u1 in the initial part of the 
acceleration where the turbulence is nearly isotropic. Now the production rate of 
‘1ci is ui aUJax,; consequently too low a value of 2 early in the acceleration gives 
- -  
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FIGURE 5. Normal-stress levels in flow through axisymmetric 16: I contraction (symbo s 
denote experimental data of Uberoi 1956), model 1 ; ----, model 2. 

too low a generation rate of that stress component, which in turn prevents 2 
from rising as quickly as the experiment indicates; and towards the end of the 
acceleration this causes too small a rate of transfer to u?. It is this interconnected 
sequence of events which causes both u? and u: to be 10-15 % lower than the 
eiperimental data over much of the acceleration. Calculations for Uberoi’s 
experiment with a 9 : 1 contraction (not shown here) exhibit the same pattern. 

Attention is now turned to the prediction of two-dimensional shear flows. The 
numerical solutions have been obtained by solvicg simultaneously the set of 
partial differential equations comprising equation (28) for the four non-zero 
elements of uiui, equation (30) and the mean momentum equation. These flows 
are not homogeneous and, of course, diffusional flux terms must be included. The 
diffusional approximations adopted render the equation set parabolic. We have 
therefore based our numerical solution scheme on the well-known finite-difference 
procedure of Patankar & Spalding (1970). Except where otherwise indicated, 
model 1 has employed the invariant diffusion simulation (25), while model 2 
adopted the simpler gradient-diffusion expression (26). A few exploratory 
calculations have shown, however, that, except for the asymmetric channel flow 
of Hanjalid & Launder (1972a) and near the outer edges of the free shear flows, 
a shift from one diffusion hypothesis to another has little effect on the stress 
profiles. Nearly all the differences between the predictions of models 1 and 2 can 
thus be attributed to the differences in the pressure-strain hypotheses. 

A final point to make is that for these thin shear flows only the primary genera- 
tion terms have been included in our solution of the Reynolds-stress equations, 
i.e. those involving aU#x,. We neglected terms containing aU,lax, in the belief 
that their effect was unimportant and with the knowledge that to include 
them would render the numerical solution scheme more cumbersome and time 
consuming. (Consistently the normal-stress-gradient terms in the streamwise 

- 
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FIGURE 6. The plane mixing layer. -, model 1; ---, model 2. (a) Mean velocity and 
shear-stress profiles. 0, a, experiment, Bradshaw, Ferriss & Johnson (1964). ( b )  Normal- 
stress profiles. 0, A, V, experiment, Castro (1973). 

mean momentum equation have also been omitted; this practice is in line with 
all thin shear flow treatments.) However Bradshaw (1 973 a )  has recently drawn 
attention to the startlingly large influences of small secondary strain rates; in 0 6 ,  
therefore, the influence of these neglected terms (as implied by the present 
closure) is briefly examined. 

Figures 6 and 7 show profiles of Reynolds stress and mean velocity in the plane 
mixing layer and the plane jet respectively. The mixing layer is a notoriously 
difficult flow to measure, there being a 50 yo variation in spreading rate reported 
among the ten major investigations. Rodi (1972) concluded that the shear-stress 
and mean-velocity measurements of Bradshaw, Ferriss & Johnson (1964) dis- 
played the best internal consistency and it is these with which comparison is made 
in figure 6. The mean-velocity predictions are barely distinguishable from each 
other and are in close agreement with the measurements except at the high 
velocity edge, where the predictions show a slightly faster approach to the free- 
stream velocity than do the measurements. The shear-stress profile shows a con- 
sistent disagreement between measurement and prediction in this region. The 
rate of spread of the flow is often reported in terms of dAx,/dz, ,  Ax,  being the 
lateral distance between positions where the velocity is 90 and 10 yo of the free- 
stream velocity UIG. Predictions for both models give a spreading rate of 0.16, 
which agrees closely with the more consistent experimental data. The normal- 
stress profiles are compared with the recent data of Castro (1973) in figure 6 ( b ) .  
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FIGURE 7.  The plane jet in stagnant surroundings. -, model 1 ; ---, model 2.  (a )  Mean 
velocity and shear-stress profiles. 0, experiment, Robins (1971),  0,  experiment, Bradbury 
(1965). ( b )  Normal-stress profiles. 0, A, v, experiment, Pate1 (1970). 

Agreement between both sets of predictions and measurements is generally satis- 
factory in the central region of the shear flow though model 1 displays a somewhat 
larger difference between 2 and 2 than the data and model 2 ,  of course, gives no 
difference at all. As with the shear-stress profile, agreement is least satisfactory 
near the high velocity edge. 

Comparison of the predicted and measured behaviour of the plane jet in 
stagnant surroundings is shown in figure 7; U,, denotes the streamwise velocity 
on the axis. Agreement of the predicted mean-velocity and shear-stress profiles 
with experiment is satisfactorily close;? the differences between model 1 and 
model 2 in the outer part of the jet are due almost entirely to the different stress 
diffusion hypothesis used. For both models the growth rate of the jet half-width 
is 0.116 compared with a mean experimental value of 0.11. The normal-stress 
profiles display greater departure from the measured values than was the case 
with the plane mixing layer, the predicted level of 2 being on average about 15 % 
too high and, as in the mixing layer, too large a separation being predicted 
between 2 and 2. It does not seem possible to identify with certainty the origin 
of these differences. To keep them in perspective, one should note that it is the 
stresses themselves (and not their r.m.s. values) that are plotted, and to measure 
r.m.s. turbulence intensity levels in free shear flows to within an accuracy of 8 yo 
is very difficult indeed. 

Figure 8 draws a comparison with the mean flow measurements of another 

f Again Rodi’s (1972) recommendation for the ‘best’ experimental data was accepted. 
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FIGURE 8. Far-field decay of plane jet in moving stream. --, model 1 ; ---, model 2 ;  1/11, 
envelope of data, Bradbury (1972, private communication). &, = jet mornenturn thickness. 

free shear flow, the plane jet with a shear velocity much less than that of the 
external stream. The figure shows the rate of decay of the centre-line velocity 
with distance downstream. Far enough from the jet exit this flow should attain 
a state of moving equilibrium where the variation of [U1,/AUll2 with xl is linear, 
U,, being the free-stream velocity and AU, the change in velocity from the axis 60 
the free stream. It is not clear whether Bradbury’s (1 972, private communication) 
data ever reach this equilibrium state. The envelope of the experiments shows 
a slowly increasing slope as x1 increases; conclusions at  large x1 are difficult to 
draw however because the width of experimental variation enlarges rapidly. 
Evidently the predicted behaviour exhibj ts a somewhat too slow rate of decay, 
model 1 being slightly the worse in this respect. 

In  this flow the relative magnitude of the terms in a turbulence energy balance 
is substantially different from that in the mixing layer or the jet in stagnant 
surroundings. For the latter, the ratio of average generation to dissipation rates 
of Ic across the flow is equal to or greater than unity; they may be designated 
‘strong’ shear flows. In the asymptotic jet, however, the importance of the pro- 
duction term progressively diminishes with distance downstream, leading to a 
correspondingly large convective traiisport; this facet is characteristic of weak 
shear flows. Models of turbulence simpler than the one used here fail to predict 
(by a wider margin) the correct rate of spread of both the strong and weak shear 
flows (cf. Rodi 1972). That the Reynolds-stress closure used here, with constants 
adjusted to suit the strong shear flows, should also fail to predict the correct rate 
of spread of the weak shear flows is a little disappointing. This topic is discussed 
further in $ 5 .  

The last free shear flow considered is the wake behind a thin flat plate, examined 
by Chevray & Kovasznay (1969). Unlike the two-dimensional shear flows con- 
sidered hitherto, this is a strongly non-equilibrium flow and the initial profiles 
exert a significant effect on the development for some distance downstream. Com- 
putations were begun at the trailing edge of the plate, where measured values of 
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FIGURES 9 (a, b). For legend see next page. 

- -  
U,, u2,, ug and Gz provided the starting profiles. In  the absence of data for 4 we 
adopted Klebanoff's (1 955) measured values and then determined the profile of E 

from the formula 

Equation (32) has the effect of putting the dissipation rate of turbulence energy 
equal to the generation rate over most of the flow since the shear stress is very 

E = o.3kau,/aX2. (32) 
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xa (cm) 

FIGURE 9. Development of wake behind flat plate; mean velocity and Reynolds-stress 
profiles. -, model 1 ;  ---, model 2;  0, A, experiment, Chevray & Kovasznay (1969). 
(a) z1 = 5 cm. (b )  zl = 20 cm. (c) z1 = 240 em. 

nearly equal to - 0-3k .  Over the outer 25 % of the boundary layer, however, 
(32 )  provides a somewhat better estimate of e than would be obtained by equating 
the generation and dissipation rates of turbulence energy. 

Profiles of mean velocity and Reynolds stress are compared with experiment 
at  0.05 m, 0.2 m and 2.4 m behind the plate in figure 9. Generally there is very 
close correspondence between the predicted and measured profiles. Indeed, for the 
normal stresses, agreement is much better than for the cases of the mixing layer 
or the plane jet shown in figures 6 and 7 (a result which makes one regret that 
measurements of 2 were not made). However at  the first two stations the normal- 
stress profiles near the axis are not well predicted, 2 being too large and % too 
small. We think that the discrepancy here is probably attributable to a residual 
near-wall influence on the pressure-strain correlation immediately behind the 
plate. 

Attention is now turned to the prediction of flow in a plane channel. In  this 
case the finite-difference solutions used the boundary conditions given in table 3 
applied in the fully turbulent region close to the walls. The following points 
should be noted: the well-known semilogarithmic law provides the basis for 
fixing the mean velocity; the boundary condition on uTi  is given by the mean 
momentum equation (dP/dx denoting the gradient of static pressure along the 
duct); the coefficients in the normal-stress boundary conditions represent a 
consensus of several of the most thoroughly documented wall flows; and finally, 
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Quantity Near-wall value 

Ul 
- 
U1% 

4 5.1 U: 

- UZ, + xz dP/dx ,  - 
- 
4 l.OUZ, - 
4 2*3UZ, 
E - UX dVJdx2 

e is the height of the roughness elements. 

TABLE 3. Near-wall boundary conditions for channel flow 

the boundary condition on E follows directly from the neglect of diffusion in the 
transport equation for turbulence energy. 

The distributions of mean velocity and Reynolds normal stresses for the 
symmetric channel are shown in figure 10. The mean velocity profile for model 1 
falls within the envelope of Laufer’s (1951) and Hanjalid’s (1970) data at com- 
parable Reynolds numbers; that for model 2 is a somewhat fuller profile. Pre- 
dicted turbulence-intensity profiles are shown in figure 10 ( b )  and compared with 
the data of Comte-Bellot (1965). Agreement is generally satisfactory though it 
is noted that model 2 gives too small a separation of uzand u? (that it should give 
any separation is mainly due to the effects of the near-wall correction (24) to the 
pressure-strain term). 

A more searching test is the asymmetric channel flow of Hanjali6 & Launder 
( 1 9 7 2 ~ ) .  In  this experiment one of the channel walls was roughened, causing a 
shear-stress ratio of about 5 : 1 between the walls. Figure 11 (a) shows the pre- 
dicted profiles of mean velocity and shear stress across the channel, the rough 
wall being on the left. The measured shear stress (deduced from the static 
pressure gradient and a Preston-tube measurement of the smooth-wall stress) 
and the model 1 predictions are indistinguishable from each other. For model 2 
the position of zero shear stress lies a little too close to the smooth surface. Agree- 
ment is not quite so good for the mean velocity; for model 1 of the pressure-strain 
approximation the predicted velocity profile is a little fuller than that measured 
in the mid-channel region. For model 2, the mean velocity profile is rather 
unsatisfactory. 

As remarked above, the diffusion terms in the stress equation have a strong 
influence on this flow. This fact is well brought out in figure 12, which shows the 
turbulence-intensity profiles for the two diffusion approximations and the two 
pressure-strain hypotheses. The code letters a and b refer to the diffusion approxi- 
mations (25) and (26) respectively (thus models 1 (a) and 2 (6) are precisely the 
same as those designated models 1 and 2 on earlier figures). With model 1 (a) 
the profiles of u1 and u2 are predicted reasonably well but the level of u3 falls 
slightly below the measured value in the vicinity of the maximum mean velocity. 
When, instead, the simple diffusion hypothesis is employed (model 1 b )  then the 
us profile is improved, and the u3 profile lies much closer to the experimental 
values. Overall, the simple diffusion hypothesis [equation (26)] gives slightly 
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FIGURE 10. Fully developed symmetric channel flow. __ , model 1;  --- , model 2. 
(a)  Mean velocity profiles. A, experiment, Laufer (1951) ; 0 ,  experiment, Hanjali6 (1970). 
( 6 )  Turbulence intensity distributions. 0, 0, 0 ,  experiment, Comte-Bellot (1965). 
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FIGURE 11. Fully developed asymmetric channel flow: mean velocity and shear stress. 

-, model 1 ;  ----, model 2; 0, experiment, Haujali6 & Launder (1972~~). 

better agreement than the invariant form. In  particular the 3:  1 ratio in the 
effective diffusion coefficient for u2 and u3 implied by (25)  is not borne out by 
experiment.? The above conclusion is reinforced by the predictions with the 
simpler pressure-strain hypothesis. Version 2 (b) gives distinctly better predic- 
tions than does 2 (a) ;  the latter gives u3 less than ug over about 50 % of the channel 
because there is insufficient diffusional transport of ug. These model 2 predictions 
are inferior to the corresponding model 1 profiles. 

The final test case considered is the high-Reynolds-number flat-plate boundary 
layer, The flow is rather similar to the symmetric channel flow and the level of 
agreement displayed by models 1 and 2 in figure 13 is what one would expect in 
view of the results shown in figure 10. The predicted wall shear stresses .for 
models 1 and 2 are respectively 5 and 15 % higher than Klebanoff's measure- 
ments; this is consistent with the mean velocity profiles shown in figure 13 (a). 
Perhaps the most interesting question is whether the linear form for f(Z/x2) 
adopted in (24) would give a sufficiently fast decay of the near-wall effect away 
from the vicinity of the surface. The indications are that it does seem to. Indeed 
the pronounced inflexion in the predicted profiles of (z)$/V, midway across the 
boundary layer (which closely matches the measured behavjour) is due to a fairly 
rapid decrease in the wall effect in this region. 

5. Concluding remarks 
At the start of the numerical study of turbulent flows reported above, it wit8 

felt that the main obstacle to a satisfactory Reynolds-stress closure for high- 
? Use of (25) ,  however, does give better predictions of the normal stresses near the edge 

of free shear flows. 
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Reynolds-number turbulence lay in the modelling of the pressure-strain terms. 
We no longer believe this to be the case. Por while the numerical solutions are not 
in perfect agreement with experimental data, few of the discrepancies can be 
attributed with certainty to shortcomings in the pressure-strain approximations. 
Inaccuracies in representing the dissipat,ion or diffusion processes or, indeed, in 
the measured turbulence quantities often seem to provide a more probable source 
of disagreement. Both the pressure-strain hypotheses led to broadly the correct 

36 F L M  68 
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FIGURE 12. Turbulence intensity profiles in asymmetric channel flow. 

(i) Model 1 (a). (ii) Model 1 (b). (iii) Model 2 (a). (iv) Model 2 ( b ) .  

development of the turbulent and mean flow fields over a fairly wide range of 
conditions. Better overall agreement was obtained with model 1. While model 2 
achieved virtually as satisfactory results in the free shear flows (including the 
homogeneous shear layer) it performed less well than model 1 in the different 
strain fields provided in Uberoi's (1956) axisymmetric contraction and Tucker & 
Reynolds' (1968) plane-strain experiments. (Model 2 gave worse accuracy in the 
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wall flows too though this was partly because the coefficients in the near-wall 
correction were chosen to suit model 1.) 

Since, with model 1 ,  the effect of mean strain on the pressure-strain term has 
been largely determined by general kinematic constraints, there seems reason to 
hope that the approximated form will give the correct trends in more complicated 
strain fields than those considered here. An important example of a more compli- 
cated strain field is that due to flow over curved surfaces. In  this case it may 
easily be shown that the present pressure-strain model does imply approximately 
the correct effect. Bradshaw ( i973a)  has comment,ed that prediction of these 
flows correctly requires the coefficient of the secondary strain term aU,/ax, in the 
shear-stress equation to be an order of magnitude larger than the coefficient of the 
primary strain aU1/ax2. (A simple eddy-viscosity approach to curved flows would 
imply that the coefficients of the primary and secondary strain terms were equal.) 
Now, for near-wall turbulence, the present proposals give the following mean- 
strain terms in the shear-stress equation: 

~ 

- i - 0  [i@u1iax2 + u~ar / , / a~ , ] ,  true generation; 

pressure-strain effects. 

- 
i 

+o .7o(~av , i ax2+u~av2 ia~ , ) ,  
- o.i8k(aul/ax, + au2/ax,i, 
+ o . i 7 ( ~ a u 1 / a ~ ,  +ijau21axl), 

On collecting terms and inserting the values 2 = 1- lk  and ui = 0*25k, which are 
typical for the near-wall region, the mean-strain terms may be expressed as 

i.e. an 8-fold amplification of the secondary strain effect. 
Bradshaw also attributes the difficulty of predicting both strong and weak free 

shear flows with a single set of coefficients to the influence of the secondary strain 
terms aUl/axl and aU2/ax,. These terms are only about one and a half orders of 
magnitude smaller than aU,/ax, in the mixing layer and plane jet in stagnant 
surroundings but are entirely negligible in the axisymmetric jet or wake. Here it 
must be said that, according to the present pressure-strain hypotheses, these terms 
do not enter the shear-stress equation. They do appear in the normal-stress equations 
and hence (since the normal stresses appear in the shear-stress equation) they 
indirectly affect the level of shear stress. It appears unlikely however that this 
connexion will be strong enough for the secondary strain terms to exert much 
effect. 

There is of course the distinct possibility that the current pressure-strain 
approximations do not contain some important effect. We believe, however, that 
the simulated form of the equation for the energy dissipation rate (particularly 
regarding the influence of mean strain on the level of e) provides an equally prob- 
able source of the stronglweak shear-flow paradox. Indeed we tend to view a 
thorough reappraisal of that equation and an assessment of the validity of the 
assumption of local isotropy as the most urgent research tasks in extending 
further the range of applicability of the present model. 
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